

CONSULT AUSTRALIA

Relationships built on trust

Gamcorp (Melbourne) Pty Ltd A.C.N 141 076 904 A.B.N 73 015 060 240 www.gamcorp.com.au Email: melbourne@gamcorp.com.au Suite 4, 346 Ferntree Gully Rd, Notting Hill VIC 3149. Tel: 03 9543 2211 Fax: 03 9543 4046

Our Ref: 2830/K.Z

29 November 2016

Xiamen Hopergy Photovoltaic Technology Co. Ltd. No.630, Tonghong Road Tongan District, Xiamen 361100 China

PV Array Frame Engineering Certification

<u>Installation of Hopergy Roof Flush Mount Solar System on KlipLok 700 with HOP-SLR02 Rails</u>

Gamcorp (Melbourne) Pty Ltd, being Structural Engineers within the meaning of Australian and New Zealand Building Regulations, have carried out a structural design check of Hopergy Roof Flush Mount Solar System installation on KlipLok 700 within Australia and New Zealand. The design check is based on the information and test report provided by Hopergy Australia (IMSOLAR).

We find the Installation of Hopergy Roof Flush Mount Solar System on KlipLok 700 for Australian and New Zealand use to be structurally sufficient based on the following conditions:

- Wind loads to AS/NZ1170.2:2011 Admt 3:2013
- Wind region A, B, C, D, W
- Wind terrain category 2 & 3
- Wind average recurrence interval of 500 years
- Maximum building height 20m
- The maximum PV panel dimensions to be 1670mm x 1000mm
- Maximum weight of the PV panel and array frame to be 15 kg/m²
- Rails to be HOP-SLR02
- The roof interface to be HOP-KLK700 as per test report 2016111201
- Each PV panel to be installed using 2 rails minimum in all circumstances
- Installation of PV array to be done in accordance with the PV installation manual
- The certification **excludes** assessment of roof structure and PV panels

Refer to attached summary table for interface spacing

NOTES:

 The recommended spacing nominated in this certification is based on the capacity of the array frame, not the roof structure and PV panel. It is the responsibility of the installer to adopt the most critical spacing.

Gamcorp (Melbourne) Pty Ltd A.C.N 141 076 904 A.B.N 73 015 060 240 www.gamcorp.com.au Email: melbourne@gamcorp.com.au Suite 4, 346 Ferntree Gully Rd, Notting Hill VIC 3149. Tel: 03 9543 2211 Fax: 03 9543 4046

• If any of the above conditions cannot be met, the structural engineer must be notified immediately.

Construction is to be carried out strictly in accordance with the manufacturers instructions. This work was designed in accordance with the provisions of Australian and New Zealand Building Regulations and in accordance with sound, widely accepted engineering principles.

Yours faithfully, Gamcorp (Melbourne) Pty Ltd

Martin Gamble
Managing Director

MAICD

<u>Mudi Ariyarathna</u>

B.Eng(Civil)(Hons)Monash, M.Eng&Mgt, MIEAust, CPEng, NPER, RBP EC-39699, RPEQ- 15899

Gamcorp (Melbourne) Pty Ltd Consulting Structural & Civil Engineers A.C.N 141 076 904 A.B.N 73 015 060 240

> www.gamcorp.com.au melbourne@gamcorp.com.au

Suite 4/ 346 Ferntree Gully Rd, Notting Hill VIC 3168. Tel: 03 9543 2211 Fax: 03 9543 4046

Structural Design Documentation

KlipLok 700 Flush Mount PV Racking System **Interface Spacing Table** According to AS/NZS 1170.2-2011 Amdt 3-2013 with HOP-SLR02 Rails within Australia and New Zealand

Terrain Category 2 & 3

Xiamen Hopergy Photovoltaic For: Technology Co. Ltd.

Job Number: 2830 Date: 29 November 2016

COPYRIGHT: The concepts and information contained in this document are the property of Gamcorp (Melbourne) Pty Ltd. Use or copying of this document in whole or in part without the written permission of Gamcorp constitutes an infringement of copyright.

LIMITATION: This report has been prepared on behalf of and for the exclusive use of Gamcorp (Melbourne) Pty Ltd's Client, and is subject to and issued in connection with the provisions of the agreement between Gamcorp (Melbourne) Pty Ltd and its Client. Gamcorp (Melbourne) Pty Ltd accepts no liability or responsibility whatsoever for or in respect of any use of or reliance upon this report by any third party.

Suite 4/ 346 Ferntree Gully Rd Notting Hill VIC 3168 Tel: 03 9543 2211 Fax: 03 9543 4046 melbourne@gamcorp.com.au www.gamcorp.com.au

ISO 9001:2008 Registered Firm Certificate No: AU1222

Job No: 2830

Client: Xiamen Hopergy Photovoltaic Technology Co. Ltd.

Project: Flush Mount Interface Spacing Table for KlipLok 700

Address: within Australia and New Zealand

Australian and New Zealand Standards

AS/NZS 1170. 2011 - Structural Design Actions

Part 0 – General Principles

Part 1 – Permanent imposed and other actions

Part 2 - Wind Actions

AS/NZS 1252 - High Strength Structural Bolting

AS 4055 - Wind Loads for Housing

AS/NZS 1664 - Aluminium Structures

AS 4100 – Steel Structures

AS/NZS 4600 - Cold-Formed Steel Structures

Wind Terrain Category: WTC 2 & 3

Designed: K.Z

Date: Nov-16

Client:Xiamen Hopergy Photovoltaic Technology Co. Ltd.Job:2830Project:Flush Mount Interface Spacing Table for KlipLok 700Date:Nov-16

Address: within Australia and New Zealand

Designed: K.Z Checked: M.A

Flush Mount Interface Spacing Table for KlipLok 700

Type of Rail HOP-SLR02
Type of Interface HOP-KLK700
Solar Panel Dimension $1.67 \text{m} \times 1.0 \text{m}$

Terrain category 2

Roof Angle (Φ) – 0° $\leqslant \Phi < 5$ °

Wind	Building Height – H (m)								
Region	H≤	10	10 <h≤15< th=""><th colspan="2">15<h≤20< th=""></h≤20<></th></h≤15<>		15 <h≤20< th=""></h≤20<>				
	D.W & U.W	Central	D.W & U.W	Central	D.W & U.W	Central			
A	1463	1606	1319	1564	1243	1527			
В	892	1091	806	986	760	930			
С	594	725	537	655	507	619			
D	369	449	334	407	316	384			
W	1124	1378	1015	1244	957	1172			

Roof Angle (Φ) – 5° $\leqslant \Phi \leqslant 30$ °

	- (·)							
Wind	Building Height – H (m)							
Region	H≤	H≤10		10 <h≤15< th=""><th colspan="2">15<h≤20< th=""></h≤20<></th></h≤15<>		15 <h≤20< th=""></h≤20<>		
	D.W & U.W	Central	D.W & U.W	Central	D.W & U.W	Central		
A	1463	1677	1319	1632	1243	1607		
В	892	1283	806	1158	760	1091		
С	594	850	537	768	507	725		
D	369	526	334	476	316	449		
W	1124	1543	1015	1463	957	1379		

D.W & U.W – Downwind and Upwind refer to note 3.

Client:Xiamen Hopergy Photovoltaic Technology Co. Ltd.Job:2830Project:Flush Mount Interface Spacing Table for KlipLok 700Date:Nov-16

Address: within Australia and New Zealand

Designed: K.Z Checked: M.A

	Roof Angle (Φ) -		30°< Φ ≤ 60°	•			
Wind			Building	Height – H (m)			
Region		H≤10		10 <h≤15< td=""><td colspan="2">15<h≤20< td=""></h≤20<></td></h≤15<>		15 <h≤20< td=""></h≤20<>	
		Intermediate	Internal	Intermediate	Internal	Intermediate	Internal
Α	_	1709	1858	1673	1822	1653	1801
В	_	1433	1819	1293	1783	1219	1762
С	_	948	1450	856	1308	808	1232
D		586	889	530	804	500	758
W	_	1588	1747	1546	1711	1522	1691

D.W & U.W – Downwind and Upwind refer to note 3.

Client:Xiamen Hopergy Photovoltaic Technology Co. Ltd.Job:2830Project:Flush Mount Interface Spacing Table for KlipLok 700Date:Nov-16

Address: within Australia and New Zealand

Designed: K.Z Checked: M.A

Flush Mount Interface Spacing Table for KlipLok 700

Terrain category 3

Roof Angle (Φ) – 0° $\leqslant \Phi < 5$ °

	ποσι / ingic (Ψ)		0 \ \ \ \ \							
Wind		Building Height – H (m)								
Region		H≤10		10 <h≤15< th=""><th colspan="2">15<h≤20< th=""></h≤20<></th></h≤15<>		15 <h≤20< th=""></h≤20<>				
	I	D.W & U.W	Central	D.W & U.W	Central	D.W & U.W	Central			
Α		1689	1787	1624	1716	1575	1663			
В		1316	1617	1136	1394	1014	1242			
С		871	1066	754	922	674	823			
D		539	658	467	570	418	510			
W		1553	1639	1436	1577	1280	1530			

Roof Angle (Φ) – 5° $\leqslant \Phi \leqslant$ 30°

	rtoor rangic (+)		3 7 7 7 3	·					
Wind	Building Height – H (m)								
Region		H≤10		10 <f< th=""><th>l≤15</th><th colspan="2">15<h≤20< th=""></h≤20<></th></f<>	l≤15	15 <h≤20< th=""></h≤20<>			
		D.W & U.W	Central	D.W & U.W	Central	D.W & U.W	Central		
Α		1689	1870	1624	1794	1575	1738		
В		1316	1812	1136	1642	1014	1462		
С		871	1253	754	1083	674	966		
D		539	771	467	668	418	597		
W		1553	1712	1436	1646	1280	1596		

D.W & U.W – Downwind and Upwind refer to note 3.

Client:Xiamen Hopergy Photovoltaic Technology Co. Ltd.Job:2830Project:Flush Mount Interface Spacing Table for KlipLok 700Date:Nov-16

Address: within Australia and New Zealand

Designed: K.Z Checked: M.A

	Roof Angle (Φ) –		$30^{\circ} < \Phi \leqslant 60^{\circ}$					
Wind			Building I	Height – H (m)				
Region		H≤10		10 <h< th=""><th colspan="2">10<h≤15< th=""><th colspan="2">15<h≤20< th=""></h≤20<></th></h≤15<></th></h<>	10 <h≤15< th=""><th colspan="2">15<h≤20< th=""></h≤20<></th></h≤15<>		15 <h≤20< th=""></h≤20<>	
		Intermediate	Internal	Intermediate	Internal	Intermediate	Internal	
Α		1846	1995	1794	1944	1754	1904	
В		1807	1957	1756	1905	1635	1865	
С		1400	1825	1209	1773	1078	1654	
D		859	1312	744	1133	665	1011	
W		1735	1885	1684	1833	1644	1793	

 $\ensuremath{\mathsf{D.W}}$ & $\ensuremath{\mathsf{U.W}}$ – Downwind and Upwind refer to note 3.

Client:Xiamen Hopergy Photovoltaic Technology Co. Ltd.Job:2830Project:Flush Mount Interface Spacing Table for KlipLok 700Date:Nov-16

Address: within Australia and New Zealand

Designed: K.Z Checked: M.A

Designed	. KIE		Checkeu. PhA					
	General Notes							
lote 1	Following components are satisfied to use according to AS/NZS 1170.2-2011 Amdt 3-2013							
	Components	Part Number	Description					
	HOP-SLR02 Rail	1.01.SSR02.00000-00	·					
	HOP-KLK700 Clamp		as per test 2016111201					
Note 2	1.5 m to 5 m, with no Terrain category 3(TC)	more than two obstruction per 3) refers to numerous closely s	ding grassland, with well-scattered obstructions having heights generally from obstructions per hectare. spaced obstructions having heights generally from 3 m to 10 m. For example ause 4.2.1 of AS/NZS 1170.2-2011 Amdt 3-2013 for definition of Terrain					
Note 3	For the definition of Downwind, Upwind end and central, refer figure D9 from AS/NZS 1170.2-2011 Amdt 3-2013.							